salmon.triplets.samplers
.Adaptive
- class salmon.triplets.samplers.Adaptive(*, n: int, d: int = 2, ident: str = '', module: str = 'TSTE', optimizer: str = 'Embedding', R: float = 10, scorer: str = 'infogain', random_state: Optional[int] = None, **kwargs)
The sampler that runs adaptive algorithms.
- __init__(*, n: int, d: int = 2, ident: str = '', module: str = 'TSTE', optimizer: str = 'Embedding', R: float = 10, scorer: str = 'infogain', random_state: Optional[int] = None, **kwargs)
- Parameters
- nint
The number of items to embed.
- dint (optional, default:
2
) Embedding dimension.
- identstr (optional, default:
""
). The identity of this runner. Must be unique among all adaptive algorithms.
- optimizerstr (optional, default:
Embedding
). The optimizer underlying the embedding. This method specifies how to change the batch size. Choices are
["Embedding", "PadaDampG", "GeoDamp"]
.- Rint (optional, default:
1
) Adaptive sampling after
R * n
responses have been received.- scorerstr (optional, default:
"infogain"
) How queries should be scored. Scoring with
scorer='infogain'
tries to link query score and “embedding improvement,” andscorer='uncertainty'
looks at the query that’s closest to the decision boundary (or 50% probability).- random_stateint, None, optional (default:
None
) The random state to be used for initialization.
- kwargsdict, optional
Keyword arguments to pass to
Embedding
.