salmon.triplets.samplers.Adaptive

class salmon.triplets.samplers.Adaptive(*, n: int, d: int = 2, ident: str = '', module: str = 'TSTE', optimizer: str = 'Embedding', R: float = 10, scorer: str = 'infogain', random_state: Optional[int] = None, **kwargs)

The sampler that runs adaptive algorithms.

__init__(*, n: int, d: int = 2, ident: str = '', module: str = 'TSTE', optimizer: str = 'Embedding', R: float = 10, scorer: str = 'infogain', random_state: Optional[int] = None, **kwargs)
Parameters
nint

The number of items to embed.

dint (optional, default: 2)

Embedding dimension.

identstr (optional, default: "").

The identity of this runner. Must be unique among all adaptive algorithms.

optimizerstr (optional, default: Embedding).

The optimizer underlying the embedding. This method specifies how to change the batch size. Choices are ["Embedding", "PadaDampG", "GeoDamp"].

Rint (optional, default: 1)

Adaptive sampling after R * n responses have been received.

scorerstr (optional, default: "infogain")

How queries should be scored. Scoring with scorer='infogain' tries to link query score and “embedding improvement,” and scorer='uncertainty' looks at the query that’s closest to the decision boundary (or 50% probability).

random_stateint, None, optional (default: None)

The random state to be used for initialization.

kwargsdict, optional

Keyword arguments to pass to Embedding.