salmon.triplets.samplers.adaptive
.Embedding
- class salmon.triplets.samplers.adaptive.Embedding(module, module__n: int = 85, module__d: int = 2, optimizer=<class 'torch.optim.adadelta.Adadelta'>, warm_start=True, max_epochs=100, initial_batch_size=512, **kwargs)
An optimization algorithm that produces an embedding from human responses of the form
[head, winner, loser]
.- __init__(module, module__n: int = 85, module__d: int = 2, optimizer=<class 'torch.optim.adadelta.Adadelta'>, warm_start=True, max_epochs=100, initial_batch_size=512, **kwargs)
- Parameters
- modulenn.Module
The noise model to use.
- module__nint
The number of items to embed.
- module__dint, optional (default: 2)
The number of dimensions to embed into.
- optimizertorch.optim.Optimizer
The optimizer to use.
- max_epochsint, optional (default: 100)
The number of epochs—or passes through the dataset—to perform.
- warm_startbool, optional (default: True)
Whether to use the existing embedding.
- initial_batch_sizeint, optional (default: 512)
The optimizer’s (initial) batch size.
- kwargsdict, optional
Additional keyword arguments to pass the underlying noise model (CKL, TSTE, etc).